CubeSat Navigation System and Software Design

Submitted for CIS-4722
Senior Project II
Vermont Technical College
Al Corkery
Project Objectives

• Research the technical aspects of integrating the CubeSat’s Global Positioning System receiver with the NASA provided navigation software
• Propose a Software/Hardware Architecture solution
• Implement and test that solution
• Report my results to the customer
The CubeSat Lunar Lander Project

• Goal: Develop and deploy a satellite to collect data from the moon and transmit the data back to Vermont.

• Vermont Technical College: structure, thrusters, communication, navigation, electronics

• University of Vermont: low energy transfer, radiation environment modeling, spacecraft coordination and landing
The CubeSat Lunar Lander Project

• Norwich University: optical sensors and robotics
• NASA Goddard Spaceflight Center and NASA Jet Propulsion Laboratory personnel
The CubeSat Lunar Lander Project

- First Mission: Orbital launch
- Test the navigational software.
- VTC proposal approved.
- March 2012 launch secured.
The CubeSat Lunar Lander Project

- ELaNa IV mission
- Falcon 9 (SpaceX) rocket from Cape Canaveral
- 325km (202 mi) orbit
Vermont Tech Student Involvement

- Electro-Mechanical Engineering Technology Bachelors students can take the Spacecraft Systems course and work in the CubeSat Lab, on the Lunar spacecraft which becomes their required Senior Project.

- They implement the specific systems for the CubeSat.
Vermont Tech Student Involvement

• Software Engineering and Computer Engineering Bachelors students can work on implementing parts of the software systems for their Senior Project and are currently developing a test framework for the navigation system.

• Other Electro-Mechanical students have worked on a steerable dish antenna for the GENSO ground station and a testing system for the Lunar Lander landing gear.
What is a CubeSat?

• It’s a miniature satellite used for scientific research built from commercial off-the-shelf electronics.
• A CubeSat is a payload package that is attached to a rocket
• Dimensions 10cm x 10cm x 10cm.
• Has a mass of up to 1.33 kg.
• Relatively low cost.
• Relatively rapid development cycle.
What is a CubeSat?
My Assignment

• As a CPE major, work on the low level integration of the GPS receiver within the Navigation Subsystem
• In particular, figure out how our NASA supplied navigation software will interact with the GPS receiver
• Develop/Install the necessary hardware and software components
My Customers

• Dr. Carl Brandon, Head of the CubeSat Lab at VTC and Principal Investigator for the CubeSat Lunar Lander Project.

• Prof. Peter Chapin, CubeSat Software Director at VTC.
My Customers

VTC Senior Projects resident hero:
Dr. Craig Damon
The Navigation System

- Provides onboard orbit determination
- Computes where you are and where you should be at a given time in the future
- Provides accurate time measurements
- Gives velocities
- Calculates orbital adjustments
The Navigation System

Components

- Navigation software
- GPS receiver.
- On Board Computer (OBC).
- The interconnections and communication between the three components
The Navigation Software

- Goddard Enhanced Onboard Navigation System (GEONS)
- Provides onboard orbit determination
- Improves predictive accuracy of GPS point solution fixes
- Written in ANSI standard C language
- Integrated either within GPS receiver, a com receiver, or the OBC
GEONS

Developed by NASA in response to:

1. Increased need for satellite autonomy
2. Support for collaborative scientific missions
3. Support for limited GPS visibility (high-earth orbit)
4. Proposed formation flying missions
GEONS

• Provides OOP functionality through the use of structures.
• Acts as library of methods
• Methods called via a host application
• Requires GPS data retrieved via Application Programming Interface (API) calls
• Size: 189KBytes
GEONS

• Originally proposed to be loaded and run from the spacecraft’s On Board Computer, a Texas Instruments MSP-430
• Maximum available memory for any MSP-430 variant – 256KBytes
• My initial research into our GPS receiver revealed a possible solution
• The OEMV-1 with API option enabled provides 4MBytes
• So, prove it will work
GPS

- Global Positioning System (GPS), GLONASS
- A space-based Global Navigation Satellite System (GNSS)
- Provides reliable location and time data
- Requires Line-of-Sight to 4 or more GPS satellites
- Commercial Receiver Limitations: 18 kilometers (11 mi) altitude and 515 m/s or 1152 mi/hr velocity
GPS

Diagram showing the process of receiving GNSS signals from satellites using a GNSS antenna, GNSS receiver, and routing to other user equipment.
NovAtel OEMV-1
Figure 37: Top-view of 20-Pin Connector on the OEMV-1

<table>
<thead>
<tr>
<th>Signal</th>
<th>Behavior</th>
<th>Descriptions</th>
<th>Pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>LNA_PWR</td>
<td>Input DC</td>
<td>Power supply for external antenna LNA</td>
<td>1</td>
</tr>
<tr>
<td>V_IN</td>
<td>Input DC</td>
<td>DC power supply for card</td>
<td>2</td>
</tr>
<tr>
<td>USB D (-)</td>
<td>Bi-directional</td>
<td>USB interface data (-)</td>
<td>3</td>
</tr>
<tr>
<td>USB D (+) / COM3_Rx</td>
<td>Multiplexed</td>
<td>Multiplexed pin behavior default: USB D (+)</td>
<td>4</td>
</tr>
<tr>
<td>RESETIN</td>
<td>See strobes</td>
<td>Card reset</td>
<td>5</td>
</tr>
<tr>
<td>VARF / CAN1_Rx</td>
<td>Multiplexed</td>
<td>Multiplexed pin behavior, see strobes default: VARF</td>
<td>6</td>
</tr>
<tr>
<td>Event2 / CAN1_Tx</td>
<td>Multiplexed</td>
<td>Multiplexed pin behavior, see strobes default: Event2</td>
<td>7</td>
</tr>
<tr>
<td>CAN2_RX</td>
<td>Bi-directional</td>
<td>CAN Bus dedicated port</td>
<td>8</td>
</tr>
<tr>
<td>Event1 / COM3_Tx</td>
<td>Multiplexed</td>
<td>Multiplexed pin behavior, see strobes default: Event1</td>
<td>9</td>
</tr>
<tr>
<td>GND</td>
<td>Ground</td>
<td>Digital Ground</td>
<td>10</td>
</tr>
<tr>
<td>COM1_Tx</td>
<td>Output</td>
<td>Transmitted Data for COM 1 output</td>
<td>11</td>
</tr>
<tr>
<td>COM1_Rx</td>
<td>Input</td>
<td>Received Data for COM 1 input</td>
<td>12</td>
</tr>
<tr>
<td>GND</td>
<td>Ground</td>
<td>Digital Ground</td>
<td>13</td>
</tr>
<tr>
<td>COM2_Tx</td>
<td>Output</td>
<td>Transmitted Data for COM 2 output</td>
<td>14</td>
</tr>
<tr>
<td>COM2_Rx</td>
<td>Input</td>
<td>Received Data for COM 2 input</td>
<td>15</td>
</tr>
<tr>
<td>GND</td>
<td>Ground</td>
<td>Digital Ground</td>
<td>16</td>
</tr>
<tr>
<td>PV</td>
<td>See strobes</td>
<td>Output indicates 'good solution' or valid GPS position when high</td>
<td>17</td>
</tr>
<tr>
<td>GND</td>
<td>Ground</td>
<td>Digital Ground</td>
<td>18</td>
</tr>
<tr>
<td>PPS</td>
<td>See strobes</td>
<td>Pulse output synchronized to GPS Time</td>
<td>19</td>
</tr>
<tr>
<td>CAN2_TX</td>
<td>Bi-directional</td>
<td>CAN Bus dedicated port</td>
<td>20</td>
</tr>
</tbody>
</table>
System Decomposition

GPS Antenna

50Ω Coax Cable

+5 VDC LNA PWR

OMV-1 GPS Receiver

MCX Connector

COM 1
20-pin header (10, 11, 12)

20-pin header (1, 2)

20-pin header (2, 10)

CubeSat Power Supply

+3.3 VDC +5%/-3%

Pluggable Processor Module (PPM)

Texas Instruments MSP430 Micro Processor

+5 VDC

External sensors and flight control systems

MSP430 I/O pins

UART0
NovAtel OEMV-1

- L1 band GPS receiver (1575.42MHz)
- Multiple GPS message formats: RTCA, RTCMV3, RTCM, CMR, CMRPLUS and NMEA
- ARM XScale processor
- API option: develop specialized C/C++ applications to further extend the functionality of the OEMV-1 receiver
- 4MB of available memory
Hardware Tasks

• Perform a firmware upgrade to enable API option and disable Altitude/Velocity restrictions
• Upgrade can only be done through COM1 or COM2
• These ports are LVTTTL, PC serial ports are RS-232
Hardware Tasks

• Specify and mount outdoor GPS antenna and cable
• Connect to OEMV-1: COM1, COM2, USB1 from a PC
• Design and build a signal breakout board
• Include an RS-232 to LVTTL transceiver
Hardware Tasks

- GPS-701-GGL Antenna
- 15 meters RG-56 50 ohm cable
- MCX to TNC adaptor cable
Hardware Tasks
Hardware Tasks
Signal Breakout Board
The Hardware
High Level Software Architecture

3 baseline processing functions

- **Interface**: Executed as needed to process receiver data, GEONS commands, and GEONS telemetry requests.

- **State Vector Estimation**: Executed every 30 seconds to propagate the spacecraft’s current state estimates to the time and correct current state using GPS data.
High Level Software Architecture

3 baseline processing functions

• Real-Time Prediction: Executed to propagate the current state estimate ahead in time to the requested output time, typically the next whole second
GPS/GEONS Processes

<table>
<thead>
<tr>
<th>Processing Frequency</th>
<th>GPS Measurement every 0.1 second</th>
<th>State Vector Estimation every dt seconds</th>
<th>Realtime State Prediction every second</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Measure pseudorange and Doppler at time T</td>
<td>Select measurements to be processed</td>
<td>User State at Time T</td>
</tr>
<tr>
<td></td>
<td>Pseudorange and Doppler at time T</td>
<td>GPS Measurements</td>
<td>Propagate state to T+2dt in 1-second increments</td>
</tr>
</tbody>
</table>

Current Time

T+0.1 second T+dt seconds
High Level Software Architecture

Components and Interrelationships

• GEONS, host application and API on the GPS receiver
• Flight control processes on the OBC
• The host application acts as an interface to the GEONS
• Host application communicates with and gets data from the GPS via the GPS API
• Flight control processes initiates its data transfers via the host application
Software Decomposition

- Signal Acquisition
- Tracking
- Point Positioning
- Time Determination

Flight Computer

GPS API

Host Application Software
- GPS Measurement Data
- GEONS Commands

GEONS Software

Command Packets

Telemetry Packets
Software Development Tool Chain

- Rowley and Associates CrossStudio for ARM 2.0. Software Development IDE Executable and Linking Format .elf
- TOSREC.exe - Converts the .elf to industry standard ASCII strings for ease of data transfer
- DATABLK.exe – Target platform (XScale), version data, data block address
- WinLoad.exe – writes DATABLK modified srecs to the receiver’s flash memory
This function can be useful to send information out a com port that
is the same port that the receiver is logging information to.
The SEND command is used to send data to the port that will be
interleaved with other messages coming out on the port.
The length of the string to send out can be max of 88 characters

```c
static void PortSendDebug( char* szStr )
{
    static char msg[200];
    sprintf( msg, "SEND \%s\n\n", DISPLAY_PORT, szStr );
    PortSendStr( PORT_XCOM1, msg );
}
```

```c
static void Quit(void)
{
    static char msg[200];
    sprintf( msg, " terminated \n", DISPLAY_PORT, szStr );
    PortSendStr( PORT_XCOM1, msg );
    DEMAPITasksSleep(500);
    DEMAPIPortClose(DISPLAY_PORT);
    PortSendStr(PORT_XCOM1, "unlogall xcom1:\n");
    sprintf( msg, "INTERFACEMODE %c NOVATEL NOVATEL ON\n", DISPLAY_PORT_STR );
    PortSendStr(PORT_XCOM1, msg );
}
```
void geonsloop(unsigned int ignore)
{
 int i = 0;
 while(1)
 {
 get_gps_data();
 i++;
 if(i%READING_PER_VECTOR_EST == 0)
 est_vect();
 if(i%READING_PER_PROJ_EST == 0)
 project();
 OEM4API_TaskSleep(100);
 }
In Conclusion

• Hardware in place for future GPS/GEONS Software and Hardware development
• The entire GEONS Library is happily living on the GPS receiver
• More than enough memory remaining for expansions and additions
• Students interested in getting involved in the CubeSat Project: Dr. Brandon or Prof. Chapin
• Become a Partner: http://www.vtspacgrant.org/
Sources

Novatel OEMV API User Guide
MOMS-FD-UG-0471
http://en.wikipedia.org/wiki/CubeSat
http://www.cubesatlab.org/LunarLander/index.html
http://www.cubesatlab.org/LunarLander/Carl-Brandon-DevelopersWorkshop-2010-revised.pptx
http://www.vtspacegrant.org/
Questions?